
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on blong@compuserve.com

or write/fax us at The Delphi Magazine

String Grid Query

QI would like to use a string
grid to display some data,

but I do not want the user to be able
to select any cells. Setting the
Enabled property to False sort of
works, but the initial selected cell
is still selected and the grid’s scroll
bars stop working. Any ideas?

ATo stop the user selecting a
different cell, you can make

an OnSelectCell event handler for
the grid and insert the statement:

CanSelect := False

However, despite not being able to
select a new individual cell, the grid
still supports highlighting cell
ranges with the mouse. To disable
this, use the grid’s Options set
property and exclude goRangeSe-
lect. This can be done in the Object
Inspector by expanding Options
and setting goRangeSelect to False
or in code as:

with StringGrid1 do
 Options :=
 Options - [goRangeSelect]

Additionally, to stop the initial
highlighting of the first cell in the
grid, you need to assign a value to
the grid’s Selection property (a
TGridRect). Co-ordinates of -1 do
the trick. The sample project
GRID.DPR on the disk does exactly
this with a 10 by 10 grid to prove
the point (see Listing 1).

ComboBox Width Anomaly

QIf a Delphi 1 TComboBox’s Width
property is adjusted wider at

run-time its dropped down rectan-
gle is also made wider. However, as
the Width property is reduced the

dropped down rectangle remains
at the widest setting. I cannot find
a way of managing the width of the
drop-down dynamically. Is this a
Windows “feature” and if so is
there an appropriate API call to
control it?

AIn Win32 there is a cb_Set-
DroppedWidth message you

can send to the combobox, used
like this:

ComboBox1.Perform(
 cb_SetDroppedWidth,
 WidthValue, 0)

but then again in Delphi 2 and 3 the
problem does not occur. I can find
no support for this in Win16.
However, you can achieve the
desired effect in Delphi 1 by calling

THintWindow(
 ComboBox1).ReleaseHandle

just after changing Width. This is
the old cheeky typecast trick as
I’ve previously expounded several
times in this column [check Brian’s
articles in Issues 3, 4 and 5 for addi-
tional pearls of typecasting wisdom.
Editor].

Poor Person’s Polymorphism

QI have a program in which I
wish to call one of several

procedures dependent upon a vari-
able. Rather than use a big case
statement to evaluate the variable
(which means using an ordinal
type for the variable) I would like
to be able to pass a string constant
to a handler procedure and for the
handler to call the procedure of the
name defined by that constant.

AThis desire of yours is not
very far removed from poly-

morphism. When you call a poly-
morphic routine you call a specific
procedure and, depending on
some circumstance (ie which ob-
ject it is), code executes to call one
of a variety of subroutines using
some form of lookup system. You
want to call a routine and, depend-
ing on some circumstance (the
value of a string), cause one of a
variety of routines to be called.
Much the same thing but without
the objects. Poor person’s
polymorphism.

This is typically implemented
using an array of procedural vari-
ables. You will not be able to map

procedure TForm1.FormCreate(Sender: TObject);
{ Initialise selection record with -1s }
const
 NoSelection: TGridRect = (Left: -1; Top: -1; Right: -1; Bottom: -1);
var
 LoopX, LoopY: Integer;
begin
 with StringGrid1 do begin
 { Fill grid with dummy values }
 for LoopX := 1 to ColCount do
 for LoopY := 1 to RowCount do
 Cells[LoopX, LoopY] := Format(’(%d,%d)’, [LoopX, LoopY]);
 { Get rid of default selection }
 Selection := NoSelection;
 end
end;
procedure TForm1.StringGrid1SelectCell(Sender: TObject;
 Col, Row: Longint; var CanSelect: Boolean);
begin
 CanSelect := False
end;

➤ Listing 1

52 The Delphi Magazine Issue 21

directly from the string constant to
a procedure name because at run-
time the names of the procedures
have typically gone. Delphi is a
compiler not an interpreter. So in-
stead you could use values from an
enumerated type which would al-
low you to index into the proce-
dural variable array. The
POORPER.DPR project on the disk
shows an example of doing exactly
this (Listing 2).

There is a simple form with three
buttons and each button has an
event handler that invokes a differ-
ent routine by calling the handler
procedure with a different value.
Note the use of a typed constant to
set up the array of procedural
variables. Each element of the ar-
ray has a different one of the target
routines assigned to it. The in-
tended subroutine gets called by a
simple array access. Because the
array contains procedural
variables, this invokes the routine.

The array is declared to be of
type TProcedure, a pre-defined type
for parameterless procedures. If
you need more exotic procedures
and functions, you should define
another procedural type. For ex-
ample, for a procedure taking a
constant string parameter:

TParamProc =
 procedure(const S: String);

The call in the handler routine
would then need a parameter list
afterwards. Maybe something like
Listing 3 (POORPER2.DPR).

Early Query Termination

QHow can one interrupt an
SQL query against an Oracle

database which has gone astray?
For example the query has been
running for 15 minutes and you
want to let the user cancel out.

AThere is nothing in the BDE
to help directly: a three

fingered salute is probably as good
as anything here. With InterBase
you could shut down the database,
but this would affect everybody
connected to it. You coluld ask
Oracle if there is any way to safely
terminate that user’s connection.

It is perhaps best to prevent this
kind of problem from occurring in
the first place. If you are using the
32-bit BDE then you can set up MAX
ROWS in the BDE Configuration appli-
cation. For example, if this was set
to 1000, the BDE would only fetch
back the first 1000 records of any
query. The minimum value for this
setting must be sufficient for any
schema information to be queried
back to the client.

Platform Checking

QHow do I determine which
platform my program is

running on?

AYou don’t specify which
product version you are

compiling with. If you are using
Delphi 2 or 3, you can use the
SysUtils variable Win32Platform.
This will have one of two values:

either Ver_Platform_Win32_Windows
or Ver_Platform_Win32_NT. If you
insist on using the Windows API
you have a choice of GetVersion or
GetVersionEx.

If you are using Delphi 1, you are
forced to use GetVersion. The prob-
lem with this is that the documen-
tation does not show how to
distinguish between Windows 3.1x
or Windows NT: both give a version
of 3.10. Fortunately the Microsoft
Developer Network Library CD (the
API programmer’s first port of call)
helps out. There is an otherwise
undocumented flag that can be
located which is set under NT.
Listing 4 shows an appropriate
function along with a sample call to
it (from TESTVER.DPR on the disk).

Going back to the 32-bit versions
of Delphi, Delphi 3 adds several
new variables to accompany
Win32Platform. We can now also get
the major and minor Windows

procedure DoIt(ProcToCall: TProcName; const S: String);
const
 { An array of the routines }
 Procs: array[TProcName] of TParamProc = (One, Two, Three);
begin
 { Call the appropriate routine }
 Procs[ProcToCall](S);
end;

➤ Listing 3

type
 { Type to signify different routines }
 TProcName = (pnProc1, pnProc2, pnProc3);
{ Here are the routines }
procedure One; far;
begin
 ShowMessage(’One’);
end;
procedure Two; far;
begin
 ShowMessage(’Two’);
end;
procedure Three; far;
begin
 ShowMessage(’Three’);
end;
{ Here is the handler routine that calls stuff }
procedure DoIt(ProcToCall: TProcName);
const
 { An array of the routines }
 Procs: array[TProcName] of TProcedure = (One, Two, Three);
begin
 { Call the appropriate routine }
 Procs[ProcToCall];
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 DoIt(pnProc1);
end;
procedure TForm1.Button2Click(Sender: TObject);
begin
 DoIt(pnProc2);
end;
procedure TForm1.Button3Click(Sender: TObject);
begin
 DoIt(pnProc3);
end;

➤ Listing 2

54 The Delphi Magazine Issue 21

versions along with the build num-
ber and a possible additional infor-
mation string. See Listing 5.

Bad Double-Clicks

QMy users often double-click
on speed buttons when in

truth they should only single click.
Because one of the speed buttons
loads another form which also has
a speed button in almost the same
place, the second click gets passed
to that component – with disas-
trous effects! Can I get the second
click and ditch it, pull it out of the
message queue altogether?

AThere may be a better way,
but one possibility is to

delay the second form for 2 tenths
of a second (or maybe more) to
avoid the problem. See Listing 6.

Setting The Time And Date

QDelphi has lots of support for
formatting dates and times,

but I can’t find anything that lets
me set the date and time.

AThe Win32 API is SetLocal-
Time. The functions in Listing

7 work quite nicely on my Windows
95 machine. There is a possibility
that NT will require you to enable
your privilege to set the date and

time, but this should give you a
start. Listing 8 has Delphi 1 equiva-
lents, using interrupt calls in as-
sembler (this is how SysUtils gets
the information in the first place),
from the TimeSet unit on the disk.

Chasing Carets

QIn Issue 9, you described a
16-bit Windows problem

when tabbing between edit con-
trols. If one edit has an OnExit

procedure TForm1.FormCreate(Sender: TObject); { project D3WINVER.DPR on disk }
begin
 case Win32Platform of
 Ver_Platform_Win32s: //Unlikely, but still...
 lblPlatform.Caption := ’Win32s’;
 Ver_Platform_Win32_Windows:
 lblPlatform.Caption := ’Windows’;
 Ver_Platform_Win32_NT:
 lblPlatform.Caption := ’Windows NT’;
 end;
 lblVersion.Caption := Format(’%d.%d’, [Win32MajorVersion, Win32MinorVersion]);
 lblBuild.Caption := Format(’%x’, [Win32BuildNumber]);
 lblAdditionalInfo.Caption := Win32CSDVersion;
end;

➤ Listing 5

function WindowsPlatform: TVersion;
const wf_WinNT = $4000;
begin
 if GetWinFlags and wf_WinNT <> 0 then
 Result := WinNT
 else if HiByte(LoWord(GetVersion)) = 95 then
 Result := Win95
 else
 Result := Win16 { or unidentifiable version }
 { actual version number can be obtained with
 low and high words of GetVersion result }
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 case WindowsPlatform of
 Win16: Caption := ’Windows 3.x’;
 WinNT: Caption := ’Windows NT’;
 Win95: Caption := ’Windows 95’;
 end;
end;

➤ Listing 4

procedure TForm1.SpeedButton1Click(Sender: TObject);
var OldTime: TDateTime;
begin
 OldTime := Time;
 { Delay for 0.2 seconds }
 repeat until Time >= OldTime + 0.2 / SecsPerDay;
 { Swallow any second click }
 Application.ProcessMessages;
 { Now show the other form, after the other click has been eaten }
 Form2.Show;
end;

➤ Listing 6

procedure SetNow(DateTime: TDateTime);
var ST: TSystemTime;
begin
 with ST do begin
 DecodeDate(DateTime, wYear, wMonth, wDay);
 DecodeTime(DateTime, wHour, wMinute, wSecond, wMilliSeconds);
 end;
 if not SetLocalTime(ST) then
 raise Exception.Create(SysErrorMessage(GetLastError));
end;
procedure SetTime(Time: TDateTime);
begin
 //Use passed in time + system date
 SetNow(Time + Date)
end;
procedure SetDate(Date: TDateTime);
begin
 //Use passed in date + system time
 SetNow(Time + Date)
end;

➤ Listing 7

procedure SetTime(Time: TDateTime);
var Hour, Min, Sec, HSec: Word;
begin
 DecodeTime(
 Time, Hour, Min, Sec, HSec);
 HSec := HSec div 10;
 asm
 mov ch, Byte(Hour)
 mov cl, Byte(Min)
 mov dh, Byte(Sec)
 mov dl, Byte(HSec)
 mov ah, $2D
 int $21
 end;
end;
procedure SetDate(Date: TDateTime);
var Year, Month, Day: Word;
begin
 DecodeDate(Date,Year,Month,Day);
 asm
 mov cx, Year
 mov dh, Byte(Month)
 mov dl, Byte(Day)
 mov ah, $2B
 int $21
 end;
end;
procedure SetNow(
 DateTime: TDateTime);
begin
 SetDate(Int(DateTime));
 SetTime(Frac(DateTime))
end;

➤ Listing 8

56 The Delphi Magazine Issue 21

handler that brings up a message
box or other modal form, the next
one refuses to display any input
caret or highlight any text when the
modal window is closed, despite
being the focused control. Using
Alt-Tab to switch away from the
app and then back to it fixes the
problem. You suggested ensuring
focus is left on the original edit con-
trol to alleviate the problem. This
is probably fine if you are alerting
the user to some error in the value
in the first edit, but what about if
the message is purely informative?
Is there a way to allow an edit to
bring up a message box on exit and
not get the lost caret problem?

AIt should be noted that the
problem occurs when you

change focus to an edit from any
control, where that control has an
OnExit event as described. The
original suggestion was to support
error messages in on-tab validation
for edit controls. The OnExit event
handler can look something like
this:
procedure TForm1.Edit1Exit(
 Sender: TObject);
begin
 if BogusValue then
 begin
 ShowMessage(’Bad value!’);
 (Sender as TEdit).SetFocus
 end
end;

Having pondered the problem
for a while, if you do want focus to
go wherever the user was planning,
it seems you have to delve rather
deeper. The problem of the lost
caret comes about because the
OnExit event seems to be triggered
whilst the original edit is process-
ing its wm_KillFocus message and
the next control is processing its
wm_SetFocus message. The OnExit
handler rips focus from the new
control by virtue of a modal win-
dow. This causes a wm_KillFocus to
be sent to the next control before
it has finished the wm_SetFocus
processing and is sufficient to stun
the 16-bit edit code into visual
silence.

To remedy the problem (and I
warn you this isn’t very elegant)
you can take over the offending
control’s underlying window pro-
cedure and manually call the
OnExit handler after the message
processing has completed. To
accomplish this, set up your con-
trols with their OnExit handlers set
up as normal.

Now, to stop the OnExit handlers
being triggered incorrectly, use the
Events page of the Object Inspector
to disassociate the handler from
the event. In other words, select
the OnExit event in the Object
Inspector, highlight the value (the
procedure name) and delete it.
This is important: if you don’t do
this, the OnExit handler will trigger

twice. Once due to the normal VCL
mechanics and once due to this
extra code.

Now you need a data field to hold
the window procedure of the con-
trol, and you will need to declare
and implement a form method that
will act as the replacement window
procedure. Lastly, the OnCreate
event handler of the form needs to
set up the new window procedure
and the OnDestroy needs to put
things back to how they were.

The new window procedure only
does things different from the
norm if a wm_KillFocus message is
received (in other words the con-
trol is losing focus). After doing the
normal processing, it calls the
OnExit event handler explicitly.
Listing 9 has the code where Edit1
has an OnExit handler (although it
doesn’t show up in the Object
Inspector: see above) and Edit2
previously displayed the lost caret
(or didn’t display it, if you see what
I mean).

If you were happy to write new
components then this window pro-
cedure replacement could be re-
placed by a simple message
handler in the new component.

Acknowledgements
Thanks to Steve Axtell for his help
this month.

unit Caretu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 Edit2: TEdit;
 Edit1: TEdit;
 { Set up the OnExit handler as normal, then use the
 Object Inspector to disassociate the handler from the
 event, as it will be called indirectly }
 procedure Edit1Exit(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 { Have a data field to store the old window procedure }
 FOldWndProc: TFarProc;
 { Declare a new surrogate window procedure }
 procedure NewWndProc(var Message: TMessage);
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
{ Here’s the routine that was the normal event handler }
{ Of course it’s now an abnormal event handler }
procedure TForm1.Edit1Exit(Sender: TObject);
begin

 ShowMessage(’Hello world!’);
end;
{ Here’s the surrogate window procedure }
procedure TForm1.NewWndProc(var Message: TMessage);
begin
 with Message do begin
 { Do message processing }
 Result := CallWindowProc(FOldWndProc, Handle, Msg,
 WParam, LParam);
 { _After_ processing call the event handler manually }
 if Msg = wm_KillFocus then
 Edit1Exit(Edit1);
 end;
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 { Set up replacement window procedure }
 FOldWndProc := TFarProc(SetWindowLong(Edit1.Handle,
 gwl_WndProc, Longint(MakeObjectInstance(NewWndProc))));
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 { Tidy up replacement window procedure }
 FreeObjectInstance(Pointer(SetWindowLong(Edit1.Handle,
 gwl_WndProc, LongInt(FOldWndProc))));
end;
end.

➤ Listing 9

May 1997 The Delphi Magazine 57

	String Grid Query
	ComboBox Width Anomaly
	Poor Person’s Polymorphism
	Early Query Termination
	Platform Checking
	Bad Double-Clicks
	Setting The Time And Date
	Chasing Carets
	Acknowledgements

